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Abstract

We discuss a theoretical framework of cognitive psychology that allows for an
understanding of the adaptivity, goal directedness, and flexibility of behavior.
Goals and intentions as explanatory principles were banned from academic
psychology under the influence of behaviorism. With the advent of the
information processing view of cognitive psychology, this taboo has been
overcome, but scientific understanding of intentionality is still lacking. At present
a computational view of cognition and action dominates throughout psychology.
Such current syntactical models are usually descriptive and make strong
assumptions concerning internal representations; they imply a manipulation of
symbols and categories which are supposed to correspond to entities in the
world. Other recent theories in cognitive psychology are oriented more toward
motivational constructs; they are based on volition and intention as explanations
for action regulation. These latter theories therefore encounter the problem of
teleology, because they rely on semantic homunculi in the mind which allocate
attention, retrieve information from memory stores, and develop intentions,
enabling the individual to act.

In our view, two approaches may be helpful to achieve a coherent new
theoretical framework for cognitive psychology. First, synergetics and
self-organization research provide principles of pattern formation and adaptivity
which can be applied to complex systems such as the mind. Second, 'New
Artificial Intelligence’” (New AI) and the situated cognition approach have
criticised classical Al research for being in quite a similar kind of impasse as




164

cognitive psychology is. Consequently, the approach of ’situated and self-
organizing cognition’ claims that emergent patterns in cognition regulate action
in an adaptiVe manner. Cognition is situated by control parameters (’valences’
which express environmental constraints). Optimality of patterns is achieved by
synergetic dynamics in the valence-driven mind.

1. Problems of cognitive psychology and action psycholbgy

The current state of affairs in cognitive psychology is characterized roughly by
two approaches.

The first approach is the view of information processing which goes back to the
’cognitive turn’ psychology took in the 1960s (Miller et al., 1960). At the heart
of the information processing view is the notion of computation of mental
symbols which represent real-world entities (Fodor, 1975). The mechanisms of
cognition are supposed to be implemented as cybernetic control of hierarchical
feedback loops (Carver & Scheier, 1982). Motivational variables and intervening
variables (like self-efficacy expectations: Bandura, 1977) result from perceived
discrepancies of actual state and goal state. Computer science and classical Al
have been important driving forces for the introduction of the information
processing framework in psychology.

The second approach is that of action theory, which has a long-standing tradition
in psychology. The concept of action defined as goal-directed and planned
behavior is deeply rooted in psychological introspection and philosophy
(Aristotle’s ’causa finalis’). Early psychological theories of willed action (Ach,
1910; Lewin, 1926) are elaborated in today’s volitional psychology (Heckhausen
& Kuhl, 1985). Volition research focusses on the cognitive and motivational
analysis of intentions as determinants of action control (Heckhausen et al., 1987).

The two approaches rest on opposing premises. Cognitive information processing
derives from a technical notion of a computational model of the mind (Anderson,
1983; Langley, 1983). This view is syntactic and cybernetic in nature. In action
theory, on the other hand, motivational variables (wishes on the emotional side,
intentions on the cognitive side) as a means of self-regulation are primary. This
is more compatible with folk psychology in that it assumes behavior to be
self-controlled and intentional. Thus, the action approach is basically semantic.
Both approaches share the assumption of mental models and mental representa-
tions of the world, upon which the mind is supposed to act. Only after the
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various stages of mental processing have been passed can the stage of realizing
action finally be entered.

Both approaches encounter serious problems which have prompted us to look for
alternative paths of conceptualization. Which problems are these? As the two
approaches described above are diverse, we shall start with discussing each sep-
arately. For the sake of clarity, we will not explicitly address the efforts which
have been made to combine the two approaches (e.g. Kuhl, 1992, who claims
that "... a functional treatment of self within a computational theory of mind is
possible.").

The problems of the computational view have been discussed extensively by
many authors in Al (see below) and in psychology (e.g. Kolers & Smythe,
1984). It has been shown, for example, that at least the initial stages of
attentional processes are massively parallel rather than serial (Neisser, 1976).
Recognition of patterns is not easily understood as a process reducible to bitwise
processing of information. This point has already been made in Gestalt:
psychology (Wertheimer, 1912; Helson, 1933), which put forward a holistic
theory stating that an array of features is not just the sum of the features of aii
components but a different entity, a ’gestalt’. In other words, there may be
emergent properties in perception and, generally, in cognition, which can hardly
be accounted for by a computational approach.

In simulations of computational models of cognition several shortcomings become
apparent. This may be one of the reasons why most of the criticisms of the com-
putational approach have been formulated in Al, whereas there is no comparable
debate in psychology (for exceptions, see e.g. Haken & Stadler, 1990; Thelen
& Smith, 1994). For example, one problem which emerged in Al research
concerns learning in tasks which demand unsupervised learning (see below).
More generally, the computational view does not handle change and the
dynamics of cognition very well. This point is addressed by connectionist Al
where learning is studied in the context of neural networks. We will discuss this
approach in more detail below.

Additionally, we may also look at the other side of the coin of dynamics, at
stability. It is vitally important that cognitive entities remain stable under quite
diverse conditions. This is evident in perception where objects are perceived as
invariant even if they are changed, distorted, occluded, transposed, etc. In social
cognition, belief systems and attitudes are maintained in different environments
and under different circumstances. Generally, a concept may be applied
meaningfully to different sets which have not one component in common.
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Concepts, therefore, are not simply linear compositions of elements but must
have higher-level qualities which can be evoked in a non-symbolic way. Thus,
stability in the face of various transformations is an important attribute of
cognition.

In conclusion, it seems that basic dynamical attributes of cognition — learning
and stability — which are fundamentals of any cognitive processing, are not
readily understood by computational theory (see also Vallacher & Kaufman,
1996).

Many of these criticisms do not apply to the action theoretical approach. On the
contrary, those phenomena which are hardest to define in computational terms
are the premises of action theory. The setting and pursuit of goals by a
self-determined agent is prerequisite to the very definition of action. The main
problem here is that we are dealing with concepts which are teleological right
from the start, so that an old debate arises: how can goals (i.e. future states of
an individual) cause intentions and wishes which determine the individual’s
behavior in the present? Obviously, this formulation may be an adequate
description of anybody’s introspection but is not a scientific explanation.

Action theory claims its intentionalistic terminology can explain behavior. This
situation resembles pre-Darwinian biology: the giraffe has a long neck because
it intends to eat from trees. But we may accept the terminology of action theory
as a sort of abbreviated, descriptive code for mechanisms which have yet to be
explained, non-intentionalistically and in detail. In section 4, we “intend’ to do
just this.

Another assumption of most theories of cognitive psychology has recently come
under vigorous attack, namely the assumption of mental representations. The
computational view of representation is based on the premise that there is a
’language of the mind’ (Fodor, 1975); the world is mapped into the mind in a
logical (propositional) or analogous (mental models) fashion. Thus the world is
represented by mental tokens (categories) and the categories are processed
according to computational syntactical rules. But research on categorization and
on memory has shown that this is probably not the whole story. Human
categories do not have the ’classical’ properties of set-theoretical categories
where membership.is defined by singly necessary and jointly sufficient conditions
(Rosch & Lloyd, 1978). As we have already stated above, categories are
dynamical entities which are diffuse and stable in a way which is appropriate
under the given constraints of a social and cultural environment. Furthermore,
the rules by which thinking connects categories and concepts are often not
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identical with the rules of probability and logic (see, e.g., the conjunction fallacy
in decision making, Kahneman et al., 1982). This again shows that computation
is not a sufficient explanation of human cognition.

How can these problems be overcome?

Cognitive psychology presents a rationalistic picture of cognition: action is seen
as behavior that progresses systematically from wishes to intentions, according
to a plan, schema or script. Decision is determined by 'value x expectation’
considerations. There are hierarchies of feedback loops. In short, in the
foreground of this view we deal with a fixed cognitive architecture applying
fixed formal algorithms to symbols which represent the world in an unambiguous
manner.

But what we know from observation and self-observation seems quite different:
there usually is a flow of thought, ideas, intentions, emotions. All mental events
are incessantly changing even in the absence of environmental change (although
we are not concerned here with the neurological substrate of cognition, this
applies also to brain activity). Creative and adaptive ideas and actions may come
out of a broad ’stream of consciousness’ which is perceived as being beyond
control and planning. We doubt that there is as much a priori structure in our
cognitions and actions as the cognitivists tell us.

Therefore we suggest that cognition should be conceptualized differently: we will
not take structure for granted but start from the flow of thought. Dynamical
pattern formation can serve as an alternative to pre-wired computation. Thus, we
can ask the opposite question: how does cognitive architecture emerge from
cognitive dynamics?

Several attempts have been made in psychology to investigate alternatives to the
predominant computational theory of mind. We have already mentioned gestalt
psychology. Gestalt theory gave way to behavioristic theory (i.e. anti-cognitive
information processing) in the middle of this century, but specialized species of
gestaltlike conceptualizations still exist. One of them dwels in the ecological
approach to perception, which was put forward by Gibson (1979) and Kugler &
Turvey (1987). Gibson, who had been a student of Lewin’s, developed an
*ecological theory of perception’. Its central term is affordance, a concept which
links ecological stimuli directly to the perceiver. Usually (when enough ambient
information is available, i.e. outside the tachistoscopic lab), perception consists
of a direct "pick up’ of relevant information.
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In philosophy, affordances reflect the property of ’Zuhandenheit’ (readiness
-to-hand) (Heidegger, 1962/1927). In a "hermeneutical cycle’, perception may
be seen as interpretation or as understanding of objects based upon some
pre-knowledge, which has its roots in culture and phylogeny. Therefore, all
symbol processing is based on a history of antecedents because it is embodied;
expressed in terms of the recent debate, symbol processing is always situated.

This point is elaborated in psychology, among others, by Greeno’s situativity
theory. Situativity is seen as a general characteristic of cognition (Greeno &
Moore, 1993; Law, 1993), which puts the focus more on environment-organism
coupling than on cognition ’inside the mind’. As this debate — situated action vs.
computation — is a core topic of cognitive science, we shall elaborate on it in
the next section.

2. The problems of classical Al

There seems to be consensus within a large part of the research community in
Al that classical systems are brittle, that they lack integrated learning and
generalization capabilities, and that they cannot perform in real time. This makes
them ill-suited for real world applications. We will not discuss these problems
in detail as they are well-known. We would rather focus on the underlying
reasons for these problems because they were instrumental in the New Al
approach (Pfeifer and Scheier, submitted).

The frame problem

The frame problem was originally pointed out by McCarthy & Hayes (1969). It
has more recently attracted a lot of interest (e.g. Pylyshyn, 1987). The central
issue concerns how to model change (Janlert, 1987): given a model of a
continuously changing environment, how can the model be kept in tune with the
real world? Assuming that the model consists of a set of logical propositions
(which essentially applies to any representation in classical Al) any proposition
can change at any time. For example, consider propositional representations such
as: INSIDE(ROBOT, ROOM) or ON(BATTERY, WAGON).

Assume that there is a set of such representations of the environment stored in
a robot’s memory. There is a battery and a time bomb on a wagon. The task of
the robot is to remove the battery from the room and recharge it in a safe place.
The problem here is one of determining the implications of an action. For
example, the action of moving the wagon has the ’side effect’ that the bomb will
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also be moved. Unfortunately, the robot does not know that this is relevant.
What is entirely obvious to a human observer has to be made explicit for a
robot. '

The first idea is to have the robot take possible *side-effects’ into account. There
are potentially very many. Checking them all takes a lot of time and most are
entirely irrelevant. Another solution might be to try to distinguish between
relevant and irrelevant inferences. But in order to do this one has to consider
them all anyway which implies that this approach does not have a significant
advantage over the former one.

The frame problem really is about the system-environment interaction. The
question is how models of a changing environment can be kept in tune with the
enviromment. This is not a problem of logic, but rather one of modeling.

In the real world it is not necessary to build a representation of the situation in
the first place: one can simply look at it, thereby disburdening oneself of
cumbersome updating processes. Moreover, we can point at things when talking
about them (see also ’situatedness’ below).

The frame problem is a fundamental one and is intrinsic to every modeling
approach. As soon as there is a model of a changing environment, there is a
frame problem. An important goal of intelligent systems design in New Al is to
minimize the implications of the frame problem. One of the ways to achieve this
is to minimize the amount of modeling in the first place.

The symbol grounding problem

The symbol grounding problem refers to the question of how symbols relate to
the real world. In classical Al the meaning of symbols is typically defined in a
purely syntactic way by how symbols relate to other symbols and how they are
processed by some interpreter (Newell & Simon, 1976; Quillian, 1968). The
relation of the symbols to the outside world is rarely discussed explicitly. In
other words, we are dealing with closed systems. This position not only pertains
to Al but to computer science in general. Except in real-time applications, the
relation of symbols (e.g. in database applications) to the outside world is never
elaborated, it is assumed as somehow given, the — typically implicit —
assumption that designers and potential users will know what the symbols mean
(e.g. the price of a product). Interestingly enough this idea is also predominant
in linguistics: it is taken for granted that there is some kind of correspondence
between the symbols or sentences and the outside world. The study of meaning
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then relates to the translation of sentences into some kind of logic-based
representation where the semantics is clearly defined (Winograd & Flores, 1986,
p. 18). This position is acceptable in the area of natural language since there is
always a human interpreter and it can be safely expected that he or she is capable
of establishing the appropriate relations to some outside world: the mapping 1s
"grounded’ in the human’s experience of his or her interaction with the real
world.

However, once we remove the human interpreter from the loop, as in the case
of autonomous agents, we have to take into account that the system needs to
interact with the environment on its own. Thus, the meaning of the symbols must
be grounded in the system’s own interaction with the real world. Symbol systems
in which symbols only refer to other symbols are not grounded because the
connection to the outside world is missing. The symbols have meaning only to
a designer or a user, not to the system itself. )

It is interesting to note that for a long time the symbol grounding problem did
not attract much attention in Al or cognitive science — and it has never been an
issue in computer science in general. Only the renewed interest in autonomous
robots has pushed it to the foreground. This problem has been discussed in detail
by Harnad (1990). It can be argued that the symbol grounding problem is really
an artifact of symbolic systems and ’disappears’ if a different approach is used.

The problem of situatedness

The concept of situatedness has recently attracted a lot of interest and led to
heated debates about the nature of intelligence and the place of symbol
processing systems in studying intelligence. For example, a complete issue of the
journal Cognitive Science is dedicated to "situatedness’ (Cognitive Science 17,
1993). ’Situatedness’ roughly means the following: First, it implies that the
world is viewed entirely from the perspective of the agent (not from the
observer’s perspective — see the ’frame-of-reference’ problem below). Second,
a situated agent capitalizes on the system-environment interaction. Its behavior
is largely based on the current situation rather than on detailed plans. Third, a
situated agent brings its own experience to bear on the current situation;
depending on its experience, it will behave differently. In other words, it changes
over time. As it turns out, situated agents, i.e. agents having the property of
situatedness, are much better at performing in real time because while exploiting
the system-environment interaction they minimize the amount of central
processing.
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The perspective of situatedness contrasts with traditional Al where the approach
has been — and still is — to equip the agents with detailed models of their
environment. These models form the basis for planning processes which in turn
are used for deciding on a particular action. But plan-based systems quickly run
into combinatorial problems, i.e. the frame problem. If the real world changes,
one of the main problems is keeping the models in tune with the environment.
Inspection of the problem of taking action in the real world shows that it is
neither necessary nor desirable to develop very comprehensive and detailed
models (e.g. Suchman, 1987, Winograd & Flores, 1986). The more comprehen-
sive and detailed the models, the harder the agent will be struck by the frame
problem.

Typically, only a small part of an agent’s environment is relevant for its action.
In addition, instead of performing extensive inference operations on internal
models or representations, the agent can interact with the current situation. The

_real world is, in a sense, part of the "knowledge’ the agent requires in order to

act (we put "knowledge’ in quotes to indicate that this is not the standard way of
using this term in Al. The standard way refers to knowledge structures that are
represented internally.). The agent can merely ’look at it’ through the sensors.

Traditional Al systems are not situated and there is no reason why they should
be for there is always a human interpreter in the loop. However, if we are
interested in building (or understanding) systems which act directly in the real
world, they must be situated. Otherwise, given the properties of the real world,
the system will not be able to perform intelligently, i.e. in real time, taking only
the relevant aspects of the situation into account.

The frame-of-reference problem

Whenever we are involved in designing an intelligent system, we have to be
aware of the ’frame-of-reference’ problem. Our outline of the problem is based
on Clancey’s extensive treatment (Clancey, 1991). He argued that if we want to
build models using computers or robots, we must appropriately conceptualize the
relation among the observer, the designer (or the modeler), the artifact, and the
environment. This problem is called the 'frame-of-reference’ problem.

The first thing we must understand is that behavior is always the result of a
system-environment interaction. In order to clarify this point, let us refer to the
example of Simon’s ant on the beach (Fig. 1; Simon, 1969). Let us assume that
an ant starts moving on the right-hand side of a beach and its anthill is
somewhere on the left. The direction it travels is roughly from right to left. The
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path the ant might take will be arduous because the beach is full of pebbles,
rocks, puddles and other obstacles. But this complexity may, in fact, be only an
apparent one. It would be a frame-of-reference mistake to conclqde from- the —
apparent — complexity of the trajectory that the internal mechanisms which are
responsible for generating the behavior of the ant also have to be complex. The
mechanisms which drive the ant’s behavior may be very simple, implementing
rules’ that we would describe as follows: "if obstacle sensor on left is activated,
turn right" (and vice versa). In interaction with the environment,. the apparent
complexity of the trajectory emerges. The ’rules’ are patterns in the neural
structures of the ant (how simple patterns may originate in a neural system,
which is complex even in the ant, will be discussed in section 4).

Figure 1: Simon’s ant on the beach

Note that the seeming complexity of behavior emerges from the interaction and
not from the environment alone: it would be just as erroneous to claim that the
complexity of the trajectory is due to the complexity of the environment. The
complexity of the environment is only a prerequisite. If we would increase the
size of the ant, say, by a factor of 100, and let it start in the same location with
exactly the same behavioral rules as before, it would go more or less in a
straight line! What appeared to the normal ant as obstacles would no longer be
recognized as such by the giant ant. Its antennae would not be sensitive enough
to detect the irregularities on the beach.

Or take a human sitting on the beach. Introducing other humans will make the
environment much more complex and interesting as this offers the potential for
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highly sophisticated interactions (talking, playing, kissing, etc.). Now replace our
first human by an ant. To the ant it is entirely irrelevant whether an object in the
environment is a human or any other moving object: it does not have the sensors
and brain system to experience the complexity.

Starting in the early 1980s, many of the problems of classical Al have been
claimed to be solvable using the principles of connectionism. For example,
neural networks are not brittle when confronted with new learning input as are
propositional systems. They show ’graceful degradation’ when information is
incomplete or noisy. Moreover, certain classes of learning algorithms, namely
the non-supervised learning schemes (e.g. Kohonen feature maps, Hopfield nets)
are compatible with the self-organization view advocated later in this paper. They
can be shown to form patterns and achieve pattern recognition based on the local
interactions of subsymbolic components.

Nevertheless, they do not resolve the more fundamental problems mentioned in
this section; neural networks still face the frame-of-reference problem. For
example, the activation of output nodes in the standard back-propagation
networks must be interpreted by a human observer — thus, there is always an
observer in the loop. Also, neural networks always learn; they do not (have to)
distinguish between relevant and irrelevant input stimuli. All items of the
learning sets are relevant because the observer typically has made a careful
pre-selection of the input data.

We suggest that neural networks are viable tools if they are embedded in a
complete system that interacts autonomously with its environment. Only in this
way can neural networks circumpass the frame-of-reference problem. There is
no need any longer for an observer to interpret the activations of the nodes in the
networks, rather the network is grounded in the physical body and the
interactions with the real world (Harnad, 1990). This point, which is at the core
of New Al, will be discussed in more detail helow.

3. The New Al approach: complete autonomous agents

New Al has emerged as an alternative to classical Al, as an attempt to overcome
the problems of the traditional approach. The core idea is to study the interaction
of an agent (human, animal or robot) with the environment or real world, rather
than investigating well-defined problems in virtual or block worlds. In other
words, the focus is on the situated activity of an agent in its environment.
Intelligence is seen in the interaction, not within the system.
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This approach has several implications. We shall focus on three of them:
embodiment, completeness, and ecological niches.

Embodiment

Interaction with an environment implies that embodied systems have to be con-
structed. Embodiment is a prequisite of situated cognition. Only if a system is
in direct relation with its environment, i.e. only if it has a body of some sort, is
it able to act in a situated way.

In terms of intelligent systems design and modelling the idea of embodiment has
led to a remarkable increase of work with mobile robots or autonomous agents.
Mobile robots constitute the optimal tool for New Al, because on the one hand
they allow for a synthetic approach (the hallmark of Al), and on the other hand
can be used to study issues of situated cognition implemented in interaction with
the real world. Let us look at one example.

Brooks’ subsumption architecture was the first approach towards New Al, or be-
havior-based robotics (Brooks, 1986). It is a method of decomposing the control
architecture of a robot into a set of task-achieving "behaviors’ or competencies.
The usual approach of conceptualizing intelligence is based on functional
decomposition: First, there is sensing (i.e. perception), then internal processing
(e.g. world modeling, planning, decision making) and finally some actions are
executed (e.g. moving forward, grasping an object). This leads to the sense-
think-act cycle of the traditional information processing approach. It is sometimes
also called horizontal decomposition since each module follows the other
sequentially (see Fig. 2). In contrast with the traditional approach, subsumption
architecture builds control architectures by incrementally adding task-achieving
behaviors on top of each other. Implementations of such behaviors are called
layers. Higher level layers (e.g. WANDER) build and rely on lower level ones
(e.g. AVOID). Higher layers can subsume lower layers. Hence, instead of
having a single sequence of information flow — from perception to world
modeling to action — there are multiple paths which are parallelly active. Each
of these paths (or layers) is concerned with only a small subtask of the robot’s
overall task such as avoiding walls, circling around targets, moving to a charging
station, etc. These layers can function relatively independently. They do not have
to await instructions or results produced by other layers. In short, the
subsumption approach realizes the direct couplings between sensors and
actuators, with only limited internal processing, and can therefore tackle the
frame problem mentioned above.
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Figure 2, left: The traditional decomposition of a control architecture into a
sequence of horizontally layered functional modules. Right: Vertical decomposi-
tion based on task-achieving behaviors in the subsumption approach (from Pfeifer
& Scheier, p. 134).

Complete Systems

In 1961 the Japanese psychologist Masanao Toda proposed studying *Fungus
Eaters’ as an alternative to the traditional methods of academic psychology
(Toda, 1982). Rather than performing ever more restricted and well-controlled
experiments on isolated faculties (memory, language, learning, perception,
emotion, etc.) and narrow tasks (memorizing nonsense syllables, letter perception
on degraded stimuli, etc.) we should study ’complete’ systems, though perhaps
simple ones. This idea is fundamental to the research agenda of New AL
*Complete’ in this context means that the systems are capable of behaving
autonomously in an environment without a human intermediary. Such systems
have to incorporate capabilities for classification, navigation, object manipula-
tion, and for 'deciding’ what to do. The integration of these capabilities into a
system which is capable of behaving on its own, so the argument went, will yield
more insights into the nature of mind or intelligence than looking at fragments
of the unbelievably complex human mind. The *Fungus Eater’ approach can be
seen as a precursor of a more ecologically-minded psychology (e.g. Neisser,
1976, 1982; Neisser & Winograd, 1988).

The Fungus Eater’ is an autonomous agent sent to a distant planet to collect
uranium ore. The more ore it collects, the more it will be rewarded. It feeds on
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a certain type of fungus which grows on this planet. The *Fungus Eater’ has an
internal fungus store and means of locomotion (legs), means for decision making
(brain) and collection (arms). Any kind of activity, including ’thinking’, requires
energy. If the level of fungus in the store drops to zero the *Fungus Eater’ is
dead. The *Fungus Eater’ is also equipped with sensors, one for vision and one
for detecting uranium ore (e.g. a Geiger counter).

The scenario described by Toda is interesting in a number of respects. The
*Fungus Eaters’ must be autonomous: they are simply too far away to be
controlled remotely. They must be self-sufficient as there are no humans to
replace the batteries and to repair the robots, and they must be adaptive because
the territory in which they function is largely unknown.

Ecological niches and universality

If we look at biological agents, i.e. animals, we find that they require an

environment for survival which is suited to satisfy their needs. Such an environ-

ment is called an ’ecological niche’. Wilson (1975) gives the following
definition: "the range of each environmental variable such as temperature,
humidity, and food items, within which a species can exist and reproduce.”
(p. 317).

In nature, there is no such thing as a "universal animal.” Animals (and humans)
are always designed’ by evolution for a particular niche. Agents behave in the
real world. As pointed out, they always require certain conditions for their
survival. A robot always requires some kind of energy source. It must be
equipped with sensors and effectors in order to perform its task in a particular
environment, or more precisely, in a particular ’ecological niche’. If the robot
has to work at night, it may not be a good idea to equip it only with a vision
sensor: an infrared device might be necessary. So, the idea of an ecological
niche holds for robots as well. It follows that there can be no universal robot,
a constraint deriving from the fact that it has to perform in the real world.

This contrasts sharply to computation. Computation is universal: Turing
machines are the only machines that need to be studied. This is, of course, only
possible because computation, by definition, "takes place’ in a virtual world. And
universality only applies in this virtual world. Computers are sometimes said to
be universal. This is true only when focusing on computation. If we look at
computers as being real machines, they depend very much on their environment.
They require a supply of electricity, must be handled by their users with care,
must not be exposed to excessive heat, etc. In this sense, computers, just like
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any other artifact, are designed for a particular ecological niche. Of course, some
robots can perform several tasks and exist in more varied environments
compared to others, so their niche is broader, but nonetheless still there.

The fact that agents in the real world are not universal but have to function in
a particular niche, sounds like a severe restriction. However there is a lot of
leverage to be gained, too. Because the ecological niche is restricted, has its own
laws and characteristics, its types of objects and agents, its temperature profile
(i.e. how temperature changes over time), its lighting conditions, etc., there is
no need to provide for everything in the agent itself. Assume that in a particular
niche only large objects are relevant. Then there is no need for a high-resolution
sensor for distinguishing really small objects. If the niche is flat, wheels are
sufficient. Often, learning problems which at the purely computational level seem
intractable, converge in real-time if the constraints of the econiche are exploited.
For example, it might be thé case that all objects of interest have a bilateral
symmetry, which implies that learning can be unilateral. This makes life much
easier. However, as always, there is a tradeoff: the more constraints we exploit
in our designs, the less universal the agent will be.

The goal of New Al is to build autonomous, self-sufficient, situated, embodied
agents designed for a particular ecological niche. We shall not go into any
further detail here because this would be far beyond of the scope of this paper
(for reviews of New Al research, see Pfeifer & Scheier, submitted; Steels &
Brooks, 1995).

4. Synopsis: situated and self-organizing cognition

In this last section, we will outline a framework for a cognitive *architecture’
that dispenses with an architect, but still has the capacity to account for
organized and rational action. In the theoretical framework to be presented
below, cognition and goal-oriented action are viewed as emergent properties of
a self-organized cognitive system.

Which phenomena have to be addressed by such a framework ? Let us first —
as in a "Gedankenexperiment’ — picture the mind as a bundle of innumerable
rudimentary cognitive items, a set of fleeting cognitive and emotional micro-
events, a 'stream of consciousness’. In terms of dynamics, we address a system
spanning a very highdimensional phase space. Daringly, we may name this
bundle a ’cognitive-emotional system’, CES for short. There would initially be
no coherence and pre-wired structure in this system, just the microscopic chaos
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of the local behavior of the cognitive components (to be defined later). We might
find *associations’, i.e. some local interaction between components which happen
to be in some (temporal or spatial) vicinity (all spatial terms are to be understood
based on the notion of phase space of dynamical systems theory, i.e. as an
abstract space which is usually not the Euclidean space; Abraham & Shaw,
1992).

We would have to expect this system’s behavior to be very complex, with almost
as many degrees of freedom as the number of items or dimensions it consists of.
Obviously, such a system is not a good choice for a model of the mind. What
would be lacking?

1) Pattern — A CES would have to devise a way in which its components can
be structured and organized. Components must be grouped, sorted, combined,
etc. on a large scale, depending on their relevance for different tasks and
.demands. Thus, if some situation requires all the cognitive items that pertain to,
say, writing an essay, then other items adequate for repairing a bicycle should
be relatively less active. Of course, an outside designer / interpreter or an
internal homunculus is not allowed to provide for pattern.

2) Stability — As soon as some cognitive-emotional pattern is established it
should be stable over time, random or irrelevant changes in the environment and
in the CES must not result in immediate restructuring. The stable state of a
dynamical system (’attractor’) may be defined as a state whose neighbors in
phase space remain in the former’s vicinity. Asymptotic (global) stability means
that (all) perturbations to an attractor are damped out with time. As long as a
pattern within the CES is stable, the activity of 'writing an essay’ is not (at least
not necessarily) transformed into ’repairing a bicycle’ should, for example, a
bicycle happen to pass by the window of my study.

3) Optimality — Writing essays or repairing bicycles may temporarily be inad-
equate actions for an individual. Thus, not only should a CES have the potential
to form patterns with some asymptotic stability, but the patterns and their
stability should also be useful in a given situation. There must be a function that
"tells’ the CES how to shape its patterns in order for it to be optimally adapted
to an environment.

Self-organization

We propose that an answer to these demands may lie in the phenomenon of self-
organization which is modeled comprehensively by synergetics (Haken, 1983).
Self-organization is ubiquitous in complex systems which are in a far-from-
equilibrium state (Prigogine & Stengers, 1984). Archetypal physical systems like
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the Bénard instability and the laser are well-known examples of such systems;
these systems are capable of pattern formation not imposed by an external
designer.

The Bénard instability can be demonstrated in a layer of fluid (Kratky, 1992).
When the fluid is heated from below while the medium at its upper surface is
kept at a constant lower temperature, a heat flux permeates the fluid system. As
soon as the heat flux reaches a critical value, highly coordinated patterns of
convection appear in the fluid. In addition to local interactions among fluid
molecules, a much stronger long-range interaction is imposed. Patterns take the
shape of rolls or of hexagonal cells, depending on the form of the container and
the site of the heat application (Fig. 3). Upon a further increase of heat flux (i.e.
of the difference in temperature above and below the fluid) patterns change first
to oscillating rolls and later to nonperiodic patterns showing deterministic chaos.
The Bénard instability and equivalent atmospheric systems can be modelled quite
well by equations of only three degrees of freedom (Lorenz, 1963).

Figure 3: Bénard hexagonal and roll patterns seen from above (after
Bestehorn et al., 1993)

In summary, what is remarkable about this behavior is the emergence of a highly
ordered macroscopic pattern out of the random microscopic movements of fluid
molecules, i.e. of many degrees of freedom. Furthermore, the capacity of the
system to transport heat is increased when its control parameter grows; loosely
speaking, the system adapts to its non-equilibrium environment by ’trying to
reduce’ the gradient of temperature. All three attributes listed above — pattern
formation, stability and optimality — can be found in the dynamics of the Bénard
instability and other self-organizing natural systems.
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A general model of self-organizing systems is illustrated in Fig. 4. This model
has three constituents: control parameters are variables of the system’s
environment which denote the system’s departure from thermodynamic
equilibrium (i.e. the temperature gradient in case of the Bénard instability).
Control parameters ’drive’ the complex system (the particles of the fluid); after
a phase transition this driving produces patterns (quantified by order parameters).
Thus the complex system (endowed with many degrees of freedom at the start)
has become a two-level system: it may now be described completely at a
macroscopic level by the few degrees of freedom of order parameters (in our
example, by specifying the regular convection patterns). The two levels of the
system are linked recursively; order parameters emerge from the microscopic
dynamics, and in turn structure (’enslave’) the motion of the system’s many
microscopic components.

Macroscopic Level: Order

Parameters
Emergence+ . .
Slaving
ST - e "\ (
- Microscopic Level: Complex _»~ Control

System . “Para-~ - -
O/VOV\\\O/ o m ;jmeters_‘

T _ D

Figure 4: General model of a self-organizing system (schematic)
Application to cognition
Our suggestion is to apply what has been said about self-organizing systems in

general to the cognitive-emotional system (CES) mentioned above. If the
prerequisites for self-organization are met by the CES, this should yield an
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outline of a self-organizational theory of cognition (Haken & Stadler, 1990;
Tschacher, 1997).

At the beginning of this section we addressed the conceptualization of the
microscopic level of a CES. The cognitive components may be seen as “behavior
kernels’ (Tschacher, 1997), i.e. hypothetical cognitive micro-items not directly
accessible to introspection and experiment. If we tentatively cross the mind-body
language border, the micro components may be identified as the activation of
neuronal cell assemblies which translate, for instance, into time-dependent EEG
potentials over brain tissue (for a synergetic theory of brain dynamics see Haken,
1996). But we shall refrain from raising the eternal issue of the mind-body
interface here.

Conscious cognition (thinking, memory, intention), at any rate, is to be located
at the macroscopic level of our model; we view cognition as an order parameter
of the CES, a pattern of the cognitive system. In New Al, cognition may be
designed accordingly as attractors in the phase space of a robot. The SMC 2
model of situated categorization (Scheier & Lambrinos, 1996) consists of a
number of neural networks which are connected to the input (a CCD camera)
and to the effectors of the robot (arm-gripper system). It turns out to be feasible
to operationalize the synchronization of these networks as being equivalent to
macroscopic pattern formation of a CES. This synchronization can beassessed
using principal-component analysis and related measures.

Consequently, cognition does not result from mere associations of single
cognitive items, i.e. in terms of Al cognition is not propositional. Cognition
emerges from a multitude of synchronized items whose activity is selected in the
CES owing to the control parameters in its environment. We previously posited
that control parameters select order parameters in such a way as to reduce the
environmental nonequilibrium. Optimality and fitness are thereby increased.

It is important to note that our basic construct, the complex system CES, is free
from any intentionality. There is no volition, wish, or motivational variable in
the CES per se. Behavior kernels are just the potential elements of what — after
synchronization via self-organization — may evolve into perception, thought,
emotion, intention, plan, and consequently, action. The CES represents only the
prerequisites to think and act. All intentionality results from the interaction of the
CES with its environment, which we conceptualize as a driving of the CES by
control parameters. The equivalence to New Al, where intelligence arises from
situatedness, may gradually become apparent.
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The application of synergetics to cognition is symbolized by Fig. 5.

(Perception; Thinking;
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Figure 5: Schematic model of cognition as self-organized dynamics

Systems theory allows for a formulation of concepts suitable for a wide range of
further applications. Particularly, a definition of ’complex system’ can be tailored
to the needs of social theories, as we may conceptualize variables of social
interaction as the components of the system-under-study (Tschacher et al., 1992).
One may then empirically test the occurrence of pattern formation and nonlinear
phenomena against a different systems background, for example, social groups
and therapeutic dyads (Tschacher & Brunner, 1995; Tschacher & Grawe, 1996).

Situatedness and motivation

The interaction of cognitive order parameters with the ‘environment is the
decisive point where synergetics turns into a situated theory; it will be shown
how closely synergetic psychology and New Al are linked. We are first led to
the question of what the concept of ’control parameter’ refers to in the case of
CESs and what ’nonequilibrium’ means in cognition.

In psychology, energizing and incentive variables are treated under the heading
of motivation. Several motivational theories have conceptualized motivation as
reduction of libidinous tensions and disequilibria (as in Freudian psychology) or,
in a more cognitive fashion, as attempts to reestablish cognitive balance and
reduce dissonance (e.g. theories of social psychologists such as Heider (1958)
and Festinger (1964)). In the latter’s work, cognitive approaches go back again
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to Lewinian field theory (as does Gibson’s concept of affordance mentioned in
section 1).

Lewin’s (1926) motivational construct of ’Aufforderungscharakter’ or valence
comes very close to our general idea of motivation being the driving of a CES
by nonequilibrium control parameters. The difference lies mainly in the general
theoretical frame: Field theory is based on the concept of forces ('vector
psychology’) as basic causes of psychological dynamics; valence then results
from the tension in a psychological field. We opt for the synergetic approach,
however, which is centered on dissipation and ’thermodynamic’ nonequilibrinm
instead of forces. The progress achieved by this approach is that nonequilibrium
dynamics (synergetics) can account for the formation of pattern and of attractors,
whereas forces can only explain change. Thus, field theory must leave open the
basic question of pattern formation and optimality (and for this reason cannot
provide an answer to the symbol grounding problem). Nevertheless, the analogy
to Lewinian thought is striking, so that we use and redefine the term ’valence’
to denote a control parameter of a CES (see Fig. 5).

In Fig. 5 valences are located outside of the cognitive system CES. We
recognize the sources of valence in the biological, social, cultural, and physical
environment of the CES (seen this way, the body is "environment’ to cognition).
The cognitive-emotional state of an individual is therefore continuously embedded
in biological nonequilibrium (e.g. hypothalamic activity leading to ’hunger’
cognition/emotion), cultural and social nonequilibrium (e.g. working atmosphere
in an organization may facilitate or impede creativity), physical nonequilibrium
(e.g. affordances built into housing and architecture, enabling certain ’standing
patterns of behavior’ while discouraging others (Barker, 1968)).

In reacting to the frame-of-reference problem, New Al argues for a wide
definition of the cognitive system. Representation and memory, for example, also
encompass the cultural setting and sensorimotor loops of an autonomous agent:
culture and motor behavior can be seen as parts of cognition. Thus, there seems
to be a discrepancy with our model which locates valences outside the CES.
However this discrepancy is superficial and easily resolved: Valences are defined
in such a way as to transfer pragmatic information (about various kinds of
nonequilibrium) to the CES. A pebble is not a valence, but the pebble as an
obstacle to an ant is (as well as its posing a challenge to a child!). Therefore
valences are inferfaces between pebbles and agents. We consider it to be of
minor importance whether we view ’pebble-valence’ inside cognition or as
environment to cognition. We stress that a CES becomes sifuated by valences,
and to us it seems purely a matter of terminology whether valences are seen as
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cognition or as constraints for cognition. Dynamical systems theory (e.g.
Thompson & Stewart, 1993) is liberal when it comes to defining systems; what
is conceptualized as part of, or environment to, a dynamical system-under-study
is mainly a matter of convenience and convention. ’System’ is not an ontological
concept and should by no means be treated as such.

Evolutionary situatedness

New Al designs agents for specific ecological niches. In biological agents, it is
obvious that the interaction of CES and valences is based on a long history of
coevolution (i.e. joint and mutual evolution of CES and valences). For example,
in human infants (but not in infant dolphins) there is a preparedness for visual
cliffs, and for small, black, eight-legged animals: certain behavior kernels seem
to exist from birth as predesigned candidates for being selected by certain
valences in the physical environment.

The fit of system and control parameters / valences may take different forms:
(a) In the Bénard instability the fluid is chosen accordingly (gasoline would not
work as well because of its viscosity and inflammability).

(b) In robotics, designers provide autonomous agents with predesigned value
systems to adapt them for their niches.

(c) In the case of animals like the human individual, phylogeny has provided
constraints for cognition by a highly prestructured (though not pre-wired!)
neuronal substrate.

In the latter case (¢) of ’natural’ coevolution, the fit of system and control
parameters is accounted for by the loop ’valence-CES-pattern-valence’ of Fig.
5. This loop of coevolution deals with the symbol grounding problem; it has
made the cognitive system capable of adaptation on a phylogenetic time scale.
This time scale is much larger than the one of cognition in the here-and-now. In
principle, however, the mechanism of coevolution is analogous to cognition seen
as selection of order parameters in the here-and-now. Accordingly, Haken (1983)
speaks of a "Darwinism of microscopic modes". Therefore, long-term
coevolution is the platform on which self-organization occurs. Or rather,
coevolution sets the stage for its own core method, namely self-organization (for
a treatment of ’endosystems’ — systems which modify their environment to
modify themselves — see, Rossler, 1987; Atmanspacher & Dalenoort, 1994;
Tschacher, 1997).

This is different in the two other examples given, (a) Bénard and (b) robot,
where the observer or designer determines the systems’ components and/or
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valences in a meaningful way. The functioning and pattern formation in these
systems depend on the participation of the observer or designer. We therefore
have to introduce yet another loop (observer-CES-pattern-observer) into Fig. 5.
This accounts for the frame-of-reference problem of New Al (Clancey, 1991),
and more generally, for the observer-dependence of any observation. It seems
that our descriptions can never be entirely free of an homunculus. Scientific
explanation is always more or less threatened by infinite regress. The interactions
related to this principle uncertainty are given by grey arrows in Fig. 5.

This point leads us to a caveat for robot design. The fundament of adaptivity in
natural organisms is laid by coevolution. The adaptivity of cognition and action,
with which this paper mainly deals, is grounded upon this fundament. Valences
and cognition/action thus refer to each other because of their common history.
If we design a robot to act autonomously in an environment, however, we shall
have to design its value system (the valences) and its hardware substrate (e.g. the
types and positions of sensors that cause a specific preparedness), at least to a
certain extent. We should keep in mind, though, that the value systems and
hardware should have the flexibility to evolve with the environment, because
New Al knows well that pre-wired implementations lead to impasses as they
confine the evolution of the system. Therefore, with pre-installed values and
preparednesses an autonomous agent may have but few options to develop
intelligent behavior; a competing computational expert system may consequently
have an advantage right from the start (its designer did his or her best to create
an optimal knowledge base). It is not easy for a synthetic approach like Al to
beware of the homunculus of the designer.

The lesson of situated and self-organizing cognition at this point would be to
provide an autonomous robot with many degrees of freedom, but just enough
structure to get along and organize itself. We should heed Brooks’ warning that
it took evolution the longest to reach the simplest level of intelligence. The
evolution of insect-level intelligence lasted 3 billion years, the subsequent
evolution of human intelligence "only another 500 million years" (Brooks, 1991).
A fascinating empirical question is how much faster Al might be.

The frame problem, the symbol grounding problem, and the frame-of-reference
problem of Al are highly relevant for psychology in that they show that
intelligence and adaptive cognition cannot be computed and implemented directly.
The lesson of New AI for action psychology is that one-sidedness leads to
pseudo explanations. New Al suggests that intelligence is perhaps uniikely, but
may evolve from the interaction of several environments with and in a situated
cognitive system. Since we know that intelligent cognition exists, we may
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suppose it is a result of evolutions at different time scales; it dwells at the
interface of these evolutions.
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